

DARPA-EPRI Megawatt Power Electronics

Program Review

Presented to:

DARPA/EPRI MEGAWATT Power Electronics Review

The Hilton Alexandria Mark
Center

Alexandria, VA

October 17-18, 2000

NORTHROP GRUMMAN

 $m{S}$ ilicon $m{P}$ ower $m{CO}$ rporation

Thermal Management Analysis, Design and Fabrication Plan for SPCo 200 Amp Package

NORTHROP GRUMMAN

Silicon $m{P}$ ower $m{CO}$ rporation

Analysis of SPCo 200 Amp Package

- Model Specifics
 - Both Steady State and Transient Analysis
 - Two Types of Boundary Conditions
 - Forced Convection from Back Face
 - Perimeter (Liquid) Cooling Only
 - Boundary Conditions
 - No Radiation
 - No Convection other than Prescribed
 - h = 100 W/m²·K on Package Back Surface
 h = 1000 W/m²·K on Two Edges
 - 12 GTO's Each Dissipating 50W
- 108 JFETS's Dissipating No Power NORTHROP GRUMMAN

Silicon Power COrporation

Analysis of SPCo 200 Amp Package

- Model Specifics
 - Materials Used in Analysis
 - Baseline Copper Tungsten (CuW 10:90)
 - CuW Encapsulated TPG with Thermal Vias
 - Geometry
 - GTO 2mm X 2mm
 - JFET 1mm X 1mm
 - Die Package 30mm X 30mm
 - Die Thickness = 0.6mm
 - Encapsulated TPG
 - 0.1mm CuW foils on 0.5mm TPG

NORTHROP GRUMMAN

 $m{S}$ ilicon $m{P}$ ower $m{CO}$ rporation

Analysis of SPCo 200 Amp Package

Finite Element

Model

- ABAQUS Finite
 Element Code
- 3D Heat Transfer Element
- 4800 Nodes
- 3393 Elements
- Processed on HPC3000 Platform

NORTHROP GRUMMAN

Silicon $m{P}$ ower $m{CO}$ rporation

MSC/PATRAN Version 8.0 14-Oct-00 12:45:09

Fringe: CuW, , Temperature (Nodal), Layer or Section Points, At SECTION_POINT_1

683

Steady State Results

Thickness - 0.6mm

Maximum

Temperature

• 683°C at GTO

NORTHROP GRUMMAN

Silicon $m{P}$ ower $m{CO}$ rporation

Steady State Results

Material - CuWEncapsulated APGw/Vias

- Thickness 0.6mm
- MaximumTemperature
 - 205°C at GTO

NORTHROP GRUMMAN

Silicon $m{P}$ ower $m{CO}$ rporation

Transient Thermal Analysis Results

- CuW
 - Results Show That the Diffusivity of CuW Cannot Efficiently Cool the SPCo Module
 - Thermal "Capacity" of CuW Limits Module Efficiency for Cooling
 - Thermal Conductivity Limitations Causes Undesired Gradients in the Package
 - CuW w/APG Insert
 - Analysis Shows >3X Decrease in Operating Temperature Over Solid CuW
 - Thermal Diffusivity of CuW/APG Module Will Reach Steady State (Most Efficient) and Will Also Shed All Latent Heat Before Next Cycle
 - Maximum Operating Temperatures Will Depend on "Real" Duty Cycle of SPCo Module

NORTHROP GRUMMAN

 $m{S}$ ilicon $m{P}$ ower $m{CO}$ rporation

MSC/PATRAN Version 5 0 14-Oct-00 12:54:10

536

Transient Results

- Material CuW
- Thickness 0.6mm
- Maximum

Temperature

• 536°C at GTO

Fringe HeatTransfer, Step1,TotalTime=8.: Temperature (Nodal), Layer or Section Points-At SECTION_POINT_1

NORTHROP GRUMMAN

Silicon $m{P}$ ower $m{CO}$ rporation

Transient Results

Material - CuWEncapsulated APGw/Vias

- Thickness 0.6mm
- MaximumTemperature
 - 203°C at GTO

NORTHROP GRUMMAN

Silicon Power COrporation

EPRI

Design

- Annealed pyrolytic graphite encapsulated with OFHC copper
- Diffusion bonded assembly
- 68% APG volume fractionk_x = k_y = 1168 W/mK
- Copper vias place in high through thickness thermal flux regions (under the GTOs)

NORTHROP GRUMMAN

Silicon $m{P}$ ower $m{CO}$ rporation

EPRI

Design

 Annealed pyrolytic graphite (APG)
 encapsulated insert
 k_x = k_y = 1700 W/mK

NORTHROP GRUMMAN

 $m{S}$ ilicon $m{P}$ ower $m{CO}$ rporation

Fabrication

Establish the processing parameters of encapsulating APG within copper

Diffusion bonded copper encapsulated APG coupon

- Established time/temperature bake-out schedule
- Established pressure/ temperature/time diffusion bonding schedule
- Evaluated bond integrity

Section view of diffusion bonded coupons

NORTHROP GRUMMAN

 $m{S}$ ilicon $m{P}$ ower $m{CO}$ rporation

Fabrication

Bonding Fixture

NORTHROP GRUMMAN

Silicon $m{P}$ ower $m{CO}$ rporation

Prototyping Tasks

- Final Review of Drawings and Release
- Prepare Pre-bond Assembly Kit (machined APG inserts, machined copper blanks and tooling)
- Assembly and Diffusion Bonding
- Final Machining
- Substrate Evaluation

Spin-off Application

Design & Analysis

- **Laser Diode Packaging**
- .010" Copper Skin **Thickness**

Pre-Bond Kit

- Three layer design
- Middle layer contains 5 TPG inserts oriented in x/y plane

Machining

Assembly will hold 10 laser

submounts

NORTHROP GRUMMAN

Inspection

Silicon Power COrporation

EPRI

Encapsulated APG Products

Thermal Cores

Chassis/Structures

Thermal Management Components

NORTHROP GRUMMAN

 $oldsymbol{S}$ ilicon $oldsymbol{P}$ ower $oldsymbol{CO}$ rporation

